Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program.

نویسندگان

  • Fikri El Yahyaoui
  • Helge Küster
  • Besma Ben Amor
  • Natalija Hohnjec
  • Alfred Pühler
  • Anke Becker
  • Jérôme Gouzy
  • Tatiana Vernié
  • Clare Gough
  • Andreas Niebel
  • Laurence Godiard
  • Pascal Gamas
چکیده

In this study, we describe a large-scale expression-profiling approach to identify genes differentially regulated during the symbiotic interaction between the model legume Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti. Macro- and microarrays containing about 6,000 probes were generated on the basis of three cDNA libraries dedicated to the study of root symbiotic interactions. The experiments performed on wild-type and symbiotic mutant material led us to identify a set of 756 genes either up- or down-regulated at different stages of the nodulation process. Among these, 41 known nodulation marker genes were up-regulated as expected, suggesting that we have identified hundreds of new nodulation marker genes. We discuss the possible involvement of this wide range of genes in various aspects of the symbiotic interaction, such as bacterial infection, nodule formation and functioning, and defense responses. Importantly, we found at least 13 genes that are good candidates to play a role in the regulation of the symbiotic program. This represents substantial progress toward a better understanding of this complex developmental program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcript analysis of early nodulation events in Medicago truncatula.

Within the first 72 h of the interaction between rhizobia and their host plants, nodule primordium induction and infection occur. We predicted that transcription profiling of early stages of the symbiosis between Medicago truncatula roots and Sinorhizobium meliloti would identify regulated plant genes that likely condition key events in nodule initiation. Therefore, using a microarray with abou...

متن کامل

Transcription Reprogramming during Root Nodule Development in Medicago truncatula

Many genes which are associated with root nodule development and activity in the model legume Medicago truncatula have been described. However information on precise stages of activation of these genes and their corresponding transcriptional regulators is often lacking. Whether these regulators are shared with other plant developmental programs also remains an open question. Here detailed micro...

متن کامل

Interplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula

Suppression of host innate immunity appears to be required for the establishment of symbiosis between rhizobia and host plants. In this study, we established a system that included a host plant, a bacterial pathogen and a symbiotic rhizobium to study the role of innate immunity during symbiotic interactions. A pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000), was...

متن کامل

Differential expression within the glutamine synthetase gene family of the model legume Medicago truncatula.

The glutamine synthetase (GS) gene family of Medicago truncatula Gaertn. contains three genes related to cytosolic GS (MtGSa, MtGSb, and MtGSc), although one of these (MtGSc) appears not to be expressed. Sequence analysis suggests that the genes are more highly conserved interspecifically rather than intraspecifically: MtGSa and MtGSb are more similar to their homologs in Medicago sativa and Pi...

متن کامل

Four genes of Medicago truncatula controlling components of a nod factor transduction pathway.

Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting several key developmental responses in the roots of legume hosts. Using nodulation-defective mutants of Medicago truncatula, we have started to dissect the genetic control of Nod factor transduction. Mutants in four genes (DMI1, DMI2, DMI3, and NSP) were pleiotropically affected in Nod fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 136 2  شماره 

صفحات  -

تاریخ انتشار 2004